Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1377020170140020179
Tissue Engineering and Regenerative Medicine
2017 Volume.14 No. 2 p.179 ~ p.185
Effects of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein 9 system-Based Deletion of miR-451 in Mouse Embryonic Stem Cells on Their Self-Renewal and Hematopoietic Differentiation
Kim Su-Jin

Kim Chang-Hoon
An Bo-Rim
Ha Kwon-Soo
Hong Seok-Ho
Kim Kye-Seong
Abstract
Pluripotent stem cells (PSCs) are a useful source of cells for exploring the role of genes related with early developmental processes and specific diseases due to their ability to differentiate into all somatic cell types. Recently, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein 9 system has proven to be a robust tool for targeted genetic modification. Here, we generated miR-451-deficient PSCs using the CRISPR/Cas9 system with PCR-based homologous recombination donor and investigated the impact of its deletion on self-renewal and hematopoietic development. CRISPR/Cas9-mediated miR-451 knockout did not alter the gene expressions of pluripotency, cellular morphology, and cell cycle, but led to impaired erythrocyte development. These findings propose that a combination of PSCs and CRISPR/Cas9 system could be useful to promote biomedical applications of PSCs by elucidating the function and manipulating of specific miRNAs during lineage specification and commitment.
KEYWORD
CRISPR/Cas9, Pluripotent stem cells, MicroRNA, Hematopoiesis
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø